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Abstract: In this paper, we proposed some selection criteria for the puncturing vector to achieve excellent performance 

in terms of BER and gives useful guideline for design of puncturing vector based on simulation result. In this paper, we 

have compared the performance of turbo code for different puncturing location for two parity branches. Punctured 

turbo codes may show poor performance due to uneven error protection of input bits after puncturing. The focus of the 

work is on understanding and design of Punctured Turbo codes. This includes through investigation of central 

components that influence Turbo code performance, such as encoders and the interleaver. The investigations are carried 
out for transmission on additive white Gaussian noise channels. For our simulation size of interleaver selected is 

1024*1024 and keeping the number of iteration 6. Simulations are conducted on MATLAB at maximum SNR range of 

6 dB. In addition we also simulate the performance of punctured turbo codes with increasing the number of iteration 

and its effect on the performance is analyzed. 
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I. INTRODUCTION 

This paper concern Turbo codes [1, 2] one of the most 

powerful types of forward error correcting channel codes. 

Forward error correcting channel codes are commonly 
used to improve the energy efficiency of communication 

systems. On transmitter side, an FEC encoder adds 

redundancy to the data in form of parity information. Then 

at the receiver side, a FEC decoder is able to exploit the 

redundancy in such a way that a maximum number of 

channel errors can be corrected. Because more channel 

errors can be tolerated with than without an FEC codes. 

Coded system can afford to operate with a lower transmit 

power, transmit over longer distances, avoid more 

interference, use smaller antennas, and transmit at a higher 

rate. A binary FEC encoder takes k bits at a time and 
produces codeword of n bits (n>k). There are 2n possible 

sequences of n bits. The ratio k/n is called the code rate 

and is denoted by r. For every combination of code rate, 

codeword length, Modulation format, channel type and 

receiver noise power, there is practical lower limit on 

amount of energy that must be expended to convey one bit 

of information. This limit is called as Shannon capacity 

limit [3]. Each new generation of FEC code would 

perform incrementally closer to the Shannon capacity than 

the previous generation, as recently as the early 1990s the 

gap between the theory and practice for binary modulation 

was about 3dB. In other words, they required about twice 
as much energy as the theoretical minimum amount 

predicted by Shannon capacity limit. A major 

advancement in coding theory occurred in 1993, when a 

group of researcher developed Turbo codes. In 1993 

Berrou, Glavieux and Thitimajshima [1, 2] proposed a 

new class of convolution codes  called  turbo  codes  

whose  performance  in  terms of  Bit  Error  Rate  (BER)  

are close  to  the  Shannon  limit. The initial result showed 

that turbo codes could achieve energy efficiencies within 

only a half decibel of the Shannon capacity. In now days,  

 

Turbo coding techniques are used by NASA for deep 

space communication, digital video broadcasting, and in 

UMTS. The basic idea of turbo code is to use two 
convolutional codes in parallel with some kind of 

interleaving in between. Fig. 1 shows turbo encoder 

consisting of two rate-1/2 binary RSC encoders, an 

interleaver, and a puncturing block. The simplified turbo 

code block diagram in Figure 1 shows only two branches. 

In general, one can have multiple turbo encoders with 

more than two branches. Length of parity bits are same as 

that of the information sequence and rate of turbo code is 

1/3 (one input and three output sequence that is one 

information bits and two parity bit sequences from two 

RSC encoder). Turbo codes have three enhancements in 
the coding area. These are the random interleaver and two 

recursive systematic convolutional (RSC) encoders of rate 

1/2. Convolutional codes can be used to encode a 

continuous stream of data, but in this case we assumed that 

data is configured in finite block size – corresponding to 

the interleaver size. The frame can be terminated i.e. the 

encoders are forced to a known state after the information 

block. The termination tail is then appended to the 

encoded information and used in the decoder. We can 

regard the turbo code as a large block code. The 

performance depends on the weight distribution – not only 

the minimum distance but the number of words with low 
weight. Therefore we want input pattern giving low weight 

words from the first encoder to be interleaved to patterns 

giving words with high weight for second encoder. One of 

the most interesting features of turbo code is that it is not 

just a single code. It is combination of two codes that work 

together to achieve a synergy that would not be possible 

by merely using one code by itself. Although the two 

constitute encoders may be different, in practice they are 

normally identical. The input data stream and parity of the 

two parallel encoders are then serialized into a single turbo 
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code word. The interleaver is crucial part of turbo encoder. 

It is simple device that rearranges the order of the data bits 

in a prescribed, but irregular manner. Although the same 
set of data is present at the output of interleaver, the order 

of these bits has been changed. Thus output of the second 

encoder will almost surely be different order than the 

output of first encoder. Turbo code interleaver tries to 

randomize ordering of data in an irregular manner. 
 

 
Figure 1. Basic block of turbo encoder 

 

High weight code words are desirable because it means 

that they are most distinct, and thus decoder will have an 

easier time distinguishing among them. While a few low 

weight code words can be tolerated, the relative frequency 

of their occurrence should be minimized. Since the weight 

of turbo code word is simply the some of the weight of 

input and parity output of the two RSC encoders, we can 
allow one of these parity outputs to have low weight as 

long as other has high weight using interleaver. Because of 

the second encoder input has been scrambled by the 

interleaver, its parity output is quite different from the first 

encoders. Thus it is possible that one of the two encoders 

will produce a low weight output. Because of the 

interleaver probability that both the encoder 

simultaneously produces a low weight output is extremely 

small. This improvement is called the interleaver gain. 

Because of the interleaver gain performance of turbo 

codes improves. Almost any type of encoder could be used 

for the two constituent encoders. Turbo codes almost use 
recursive systematic convolutional (RSC) encoders. 

 

II. PUNCTURED CODES 

Puncturing is elimination of some bits of a codeword 

before of sending out it and replacing zero instead of these 

bits before of decoding. Puncturing is an effective 

technique to increase the data rate [4]. Puncturing is a 

tradeoff between code rate and system performance. 

Because due to puncturing code rate improves but the 

same time code performance degrades due to less number 

of information bits transmitted. Using the technique of 
puncturing, it is possible to provide different turbo-codes 

of various rates. The codes obtained after puncturing gives 

performance very nearer to those obtained with optimal 

codes (un-punctured codes) of the same rate. In certain 

application such as satellite communications, link 

reliability is of prime importance and, consequently, low 

rate codes are often used. However, bandwidth occupancy 

is of much greater importance in wireless communications 

and so high rate codes are preferred. A high rate binary 

convolutional code can be obtained by periodic 

elimination, known as puncturing, of particular code bits 

from the output of a parent low rate convolutional 
encoder. Extensive analysis on punctured convolutional 

codes has shown that their performance is always inferior 

to the performance of their low rate parent codes [5, 6]. 

Rates higher than 1/3 can be obtained by periodic 

elimination of specific code bits from the output of a rate-

1/3 turbo encoder. Some of puncturing patterns are 

unsuitable and degrade the performance of turbo code. 

Unsuitable patterns are those patterns which make 

impossible convergence of iterative decoding and 

recovering of message because of inordinate elimination 

of "1" bits of turbo coded sequence. It is clear that both 
puncturing pattern and interleaving pattern affect the 

performance of turbo codes [7, 8]. Puncturing scheme has 

been applied to turbo codes to increasing the code rate 

without increasing the complexity of the decoder. Even 

through some combination of puncturing pattern and 

interleaving pattern can lead to non-optimal performance 

of turbo code. 

 

III. SOME NOTES on DECODING 

In the case of turbo codes, there are two decoders for 

outputs from both encoders. Both decoders provide 

estimates of the same set of data bits, albeit in a different 
order. If all intermediate values in the decoding process 

are soft values, the decoders can gain greatly from 

exchanging information, after appropriate reordering of 

values. Information exchange can be iterated a number of 

times to enhance performance. At each round, decoders re-

evaluate their estimates, using information from the other 

decoder, and only in the final stage will hard decisions be 

made, i.e. each bit is assigned the value 1 or 0. Such 

decoders, although more difficult to implement, are 

essential in the design of turbo codes. One of the novel 

attributes of turbo codes is their ability to compose „larger 
codes‟ that can be coded with reasonably low complexity. 

This is achieved by iterative decoding the two constituent 

codes that together compose a turbo code. The block 

diagram of an iterative decoder is shown in figure 2. It 

consist two constituent decoder, one for each constituent 

code, and the interleaver/ deinterleaving blocks required to 

convert the sequences between the code spaces. Each 

decoder processes input blocks of size N, i.e. size of the 

interleaver. After the first decoder has perform its 

decoding using the received channel symbols associated 

with the first code, it passes a block of soft information of 
length N to the second decoder. Next the second decoder 

uses the information from the first decoder together with 

the received channel symbols associated with the second 

code. Hopefully the second decoder performs better than 

the first, since it has access to more information. Further, 

if the first decoder is presented with results from the 

second decoder it is conceivable that it might improve its 

performance, compare to first decoding attempt. Thus, in 

the second decoding round of the first decoder, it uses the 

same channel information as in the first round, together 

with the information passed from second decoder. One 

decoding iteration is completed after one pass of both the 
first and second constituent decoders. The decoding 
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performed by one constituent decoder is referred to as a 

half-iteration. Ideally, the information passed between the 

constituent decoder should consist of prior knowledge of 
the probability distribution of each in the information 

sequence. As such, the decoder inputs used as a priori 

information should depend only on transmitted 

information sequence and not on the noise on the other 

decoder inputs. 
 

 
Figure 2. An Iterative turbo code decoder 

 

By using decoders producing a posteriori probabilities so 

called APP or soft-output decoder. The posteriori 

probabilities after decoding the first constituent code can 
be used as a priori input when decoding the second 

constituent code. 
 

III. SIMULATION RESULTS 

In this section MATLAB simulations are shown. The 

performance of turbo codes is evaluated in terms of BER. 

The main tool for the performance evaluation of punctured 

turbo codes is computer simulation. Computer simulation 

generates reliable probability of error estimates as low as 

10-6 given by Shannon capacity limit. Computer simulation 

is useful for rather low SNRs since the error probabilities 

for larger SNRs are difficult to simulate. All simulations 
were taken with MATLAB. The number of iterations 

between the decoders was set at 6. In our simulation, the 

input data frame size is 1024 bits, i.e. the size of punctured 

turbo code interleaver. Channel model used in simulation 

is AWGN channel. The decoder implementation is 

complex and computationally extensive. It includes 

processing using a number of loops. The decoder decodes 

iteratively checking the number of errors after every 

iteration. If the number of errors is zero for iteration, the 

code will not execute the next iteration to decrease 

processing load. The maximum range of SNRs for 

simulation in dB is 6 and code rate of turbo codes is 1/3. 
 

 
Figure 3(a): BER versus Eb/No in dB for turbo code under 

puncturing arrangement [010001] for both parity branches 

 
Figure 3(b): BER versus Eb/No in dB for turbo code under 

puncturing vector arrangement [011100] for parity bits 

 

Figure 3(a) shows the bit-error rate versus signal-noise 

ratio plots for interleaver size 1024*1024, R= 1/3 and 

number of iteration=6 with puncturing vector [010001]. 

Figure 3(b) shows a similar graph but was simulated for 

interleaver size of 1024*1024 and puncturing pattern is 
[011100] with maximum range of SNR is 6 dB. 

 
Figure 3(c): BER versus Eb/No in dB for turbo code under 

puncturing arrangement [101010] for parity branches 

 

In Figure 3(c) and Figure 3(d) the performance of turbo 

code is compared at interleaver size of 1024*1024 and 

code rate 1/3 with puncturing vector [101010] and 

[010101] respectively. Puncturing can be applied to the 

systematic bits as well as to the parity bits or both. But 
puncturing the information bits causes serious degradation 

in system performance [10]. Hence it is recommended to 

avoid puncturing information bits and keep puncturing the 

parity bits. In our simulation, we use puncturing vector of 

period 6. In figure 3(c) and 3(d) puncturing pattern is 

equally distributed between two parity branches and also 

maximally scattered within each branch. In figure 3(b) 

puncturing vector is equally distributed but not well 

scattered. The puncturing vector used in figure 3(a) is an 

extreme case of puncturing in which puncturing is neither 

equally distributed nor well scattered. The puncturing 
vector used in figure 3(a) for simulation delete maximum 

number of bits from the two parity branches among all the 

combination used in our simulation. Among all the 

simulation result, figure 3(c) and figure 3(d) shows the 
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best performance. Performance of puncturing vector used 

in figure 3(b) is slightly inferior with number of iteration 

as compared to figure 3(c) and 3(d). Figure 3(a) shows 
much worse performance among all. The punctured vector 

used for simulation result in figure 3(c) and 3(d) are one 

cyclic shift of each other, and their performance are close 

enough to each other for few iteration and hence we can 

conclude that cyclic shifting the puncturing vector have 

essentially the approximately same performance. In our 

simulation analysis we observed that when number of 

iteration increases the performance improves but after 

some iteration there is no significant improvement in BER. 
 

 
Figure 3(d): BER versus Eb/No in dB for turbo code under 

puncturing arrangement [010101] for parity bits 

 

IV. CONCLUSION 

In this paper performance of punctured turbo code has 

been compared in terms of BER by varying puncturing 

pattern for two parity branches. Performance of turbo code 

improves by puncturing when puncturing vector is equally 

distributed and maximally scattered. For this case we 

achieved excellent performance of turbo code. 

Performance of turbo codes decreases when puncturing 

vector is not equally distributed or not maximally 
scattered. For this case performance of turbo code shows 

some degradation. We also conclude that the one cyclic 

shift of puncturing vector is not going to affect 

performance much poorer. Our investigation leads to 

provide a set of useful guideline for constructing efficient 

puncturing vector to achieve acceptable performance. The 

turbo code performance improves with the increase in the 

number of iterations. However, the rate of improvement 

decreases. Hence, after a specific number of iterations, the 

BER stays constant and does not decrease any further. 

Thus, the number of iterations should be kept such as to 

avoid extra computations. Thus, upper bounds need to be 
specified for the number of iterations. We believe that the 

guideline for puncturing vector achieved in this simulation 

work will be useful for further research in field of turbo 

coding. 
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